64 research outputs found

    Host genetic control of gut microbiome composition.

    Get PDF
    The gut microbiome plays a significant role in health and disease, and there is mounting evidence indicating that the microbial composition is regulated in part by host genetics. Heritability estimates for microbial abundance in mice and humans range from (0.05-0.45), indicating that 5-45% of inter-individual variation can be explained by genetics. Through twin studies, genetic association studies, systems genetics, and genome-wide association studies (GWAS), hundreds of specific host genetic loci have been shown to associate with the abundance of discrete gut microbes. Using genetically engineered knock-out mice, at least 30 specific genes have now been validated as having specific effects on the microbiome. The relationships among of host genetics, microbiome composition, and abundance, and disease is now beginning to be unraveled through experiments designed to test causality. The genetic control of disease and its relationship to the microbiome can manifest in multiple ways. First, a genetic variant may directly cause the disease phenotype, resulting in an altered microbiome as a consequence of the disease phenotype. Second, a genetic variant may alter gene expression in the host, which in turn alters the microbiome, producing the disease phenotype. Finally, the genetic variant may alter the microbiome directly, which can result in the disease phenotype. In order to understand the processes that underlie the onset and progression of certain diseases, future research must take into account the relationship among host genetics, microbiome, and disease phenotype, and the resources needed to study these relationships

    The Gut Microbiome and Substance Use Disorder.

    Get PDF
    Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component. Much of SUD research has focused on the neurologic and genetic facets of consumption behavior. There is now interest in the role of the gut microbiome in the pathogenesis of SUD. In this review, we summarize current animal and clinical evidence that the gut microbiome is involved in SUD, then address the underlying mechanisms by which the gut microbiome interacts with SUD through metabolomic, immune, neurological, and epigenetic mechanisms. Lastly, we discuss methods using various inbred and outbred mice models to gain an integrative understanding of the microbiome and host genetic controls in SUD

    Discovery of a Role for Rab3b in Habituation and Cocaine Induced Locomotor Activation in Mice Using Heterogeneous Functional Genomic Analysis

    Get PDF
    Substance use disorders are prevalent and present a tremendous societal cost but the mechanisms underlying addiction behavior are poorly understood and few biological treatments exist. One strategy to identify novel molecular mechanisms of addiction is through functional genomic experimentation. However, results from individual experiments are often noisy. To address this problem, the convergent analysis of multiple genomic experiments can discern signal from these studies. In the present study, we examine genetic loci that modulate the locomotor response to cocaine identified in the recombinant inbred (BXD RI) genetic reference population. We then applied the GeneWeaver software system for heterogeneous functional genomic analysis to integrate and aggregate multiple studies of addiction genomics, resulting in the identification o

    Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models.

    Get PDF
    The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA\u27s role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines. Due to complex interactions between multiple factors in the etiology of IBD, development of therapies that effectively maintain remission for this disease is a significant challenge. In this review, we discuss the role of dysregulated miRNA expression in the context of clinical ulcerative colitis (UC) and Crohn\u27s disease (CD)-the two main forms of IBD-and the various preclinical mouse models of IBD utilized to validate the therapeutic potential of targeting these miRNA. Additionally, we highlight advances in the development of genetically engineered animal models that recapitulate clinical miRNA expression and provide powerful preclinical models to assess the diagnostic and therapeutic promise of miRNA in IBD

    Integration of heterogeneous functional genomics data in gerontology research to find genes and pathway underlying aging across species.

    Get PDF
    Understanding the biological mechanisms behind aging, lifespan and healthspan is becoming increasingly important as the proportion of the world\u27s population over the age of 65 grows, along with the cost and complexity of their care. BigData oriented approaches and analysis methods enable current and future bio-gerontologists to synthesize, distill and interpret vast, heterogeneous data from functional genomics studies of aging. GeneWeaver is an analysis system for integration of data that allows investigators to store, search, and analyze immense amounts of data including user-submitted experimental data, data from primary publications, and data in other databases. Aging related genome-wide gene sets from primary publications were curated into this system in concert with data from other model-organism and aging-specific databases, and applied to several questions in genrontology using. For example, we identified Cd63 as a frequently represented gene among aging-related genome-wide results. To evaluate the role of Cd63 in aging, we performed RNAi knockdown of the C. elegans ortholog, tsp-7, demonstrating that this manipulation is capable of extending lifespan. The tools in GeneWeaver enable aging researchers to make new discoveries into the associations between the genes, normal biological processes, and diseases that affect aging, healthspan, and lifespan

    Curating gene sets: challenges and opportunities for integrative analysis.

    Get PDF
    Genomic data interpretation often requires analyses that move from a gene-by-gene focus to a focus on sets of genes that are associated with biological phenomena such as molecular processes, phenotypes, diseases, drug interactions or environmental conditions. Unique challenges exist in the curation of gene sets beyond the challenges in curation of individual genes. Here we highlight a literature curation workflow whereby gene sets are curated from peer-reviewed published data into GeneWeaver (GW), a data repository and analysis platform. We describe the system features that allow for a flexible yet precise curation procedure. We illustrate the value of curation by gene sets through analysis of independently curated sets that relate to the integrated stress response, showing that sets curated from independent sources all share significant Jaccard similarity. A suite of reproducible analysis tools is provided in GW as services to carry out interactive functional investigation of user-submitted gene sets within the context of over 150 000 gene sets constructed from publicly available resources and published gene lists. A curation interface supports the ability of users to design and maintain curation workflows of gene sets, including assigning, reviewing and releasing gene sets within a curation project context

    Interpretation of psychiatric genome-wide association studies with multispecies heterogeneous functional genomic data integration.

    Get PDF
    Genome-wide association studies and other discovery genetics methods provide a means to identify previously unknown biological mechanisms underlying behavioral disorders that may point to new therapeutic avenues, augment diagnostic tools, and yield a deeper understanding of the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made possible through large-scale collaborative efforts. These studies have begun to unearth many novel genetic variants associated with psychiatric disorders and behavioral traits in human populations. Significant challenges remain in characterizing the resulting disease-associated genetic variants and prioritizing functional follow-up to make them useful for mechanistic understanding and development of therapeutics. Model organism research has generated extensive genomic data that can provide insight into the neurobiological mechanisms of variant action, but a cohesive effort must be made to establish which aspects of the biological modulation of behavioral traits are evolutionarily conserved across species. Scalable computing, new data integration strategies, and advanced analysis methods outlined in this review provide a framework to efficiently harness model organism data in support of clinically relevant psychiatric phenotypes

    Genetic variation regulates opioid-induced respiratory depression in mice.

    Get PDF
    In the U.S., opioid prescription for treatment of pain nearly quadrupled from 1999 to 2014. The diversion and misuse of prescription opioids along with increased use of drugs like heroin and fentanyl, has led to an epidemic in addiction and overdose deaths. The most common cause of opioid overdose and death is opioid-induced respiratory depression (OIRD), a life-threatening depression in respiratory rate thought to be caused by stimulation of opioid receptors in the inspiratory-generating regions of the brain. Studies in mice have revealed that variation in opiate lethality is associated with strain differences, suggesting that sensitivity to OIRD is genetically determined. We first tested the hypothesis that genetic variation in inbred strains of mice influences the innate variability in opioid-induced responses in respiratory depression, recovery time and survival time. Using the founders of the advanced, high-diversity mouse population, the Diversity Outbred (DO), we found substantial sex and genetic effects on respiratory sensitivity and opiate lethality. We used DO mice treated with morphine to map quantitative trait loci for respiratory depression, recovery time and survival time. Trait mapping and integrative functional genomic analysis in GeneWeaver has allowed us to implicate Galnt11, an N-acetylgalactosaminyltransferase, as a gene that regulates OIRD

    The microbial community dynamics of cocaine sensitization in two behaviorally divergent strains of collaborative cross mice.

    Get PDF
    The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice. Here, we profile the composition of the naïve microbiome and its response to cocaine sensitization in two collaborative cross (CC) strains. These strains display extremely divergent behavioral responses to cocaine sensitization. A high-responding strain, CC004/TauUncJ (CC04), has a gut microbiome that contains a greater amount of Lactobacillus than the cocaine-nonresponsive strain CC041/TauUncJ (CC41). The gut microbiome of CC41 is characterized by an abundance of Eisenbergella, Robinsonella and Ruminococcus. In response to cocaine, CC04 has an increased Barnsiella population, while the gut microbiome of CC41 displays no significant changes. PICRUSt functional analysis of the functional potential of the gut microbiome in CC04 shows a significant number of potential gut-brain modules altered after exposure to cocaine, specifically those encoding for tryptophan synthesis, glutamine metabolism, and menaquinone synthesis (vitamin K2). Depletion of the microbiome by antibiotic treatment revealed an altered cocaine-sensitization response following antibiotics in female CC04 mice. Depleting the microbiome by antibiotic treatment in males revealed increased infusions for CC04 during a cocaine intravenous self-administration dose-response curve. Together these data suggest that genetic differences in cocaine-related behaviors may involve the microbiome
    corecore